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Abstract.—All evolution attributable to natural selection, at any level, is due to a causal covariance
between fitness and phenotype. Over macroevolutionary time scales, species selection is one of many
possible mechanisms for generating large-scale morphological trends. For species selection to sort
morphology, a correlation between morphology and taxonomic diversification rate must be present.
Other trend mechanisms (driven mechanisms, e.g., a bias in the direction of speciation) produce a
systematic change in the mean phenotype over time. All mechanisms can co-occur. Here I
demonstrate (1) an inverse correlation between diversification rate and calyx complexity that
demonstrates the effect of species selection on morphology. Genera with simple calyces tend to
increase in diversity, whereas genera with complex calyces have a net decrease in diversity; and (2)
the presence of a driven trend mechanism in monobathrid crinoids where descendant genera tend to
be simpler than their ancestors. The separate effects of these two classes of trend mechanisms can be
combined by using the Price’s Theorem, which partitions the contribution to the overall change in
calyx complexity over time accurately among selection and driven mechanisms. Price’s Theorem
provides significant conceptual and methodological clarification of the contribution of multiple and
interacting hierarchical mechanisms in generating large-scale trends.
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Introduction

Evolution by natural selection is easy. Only
heritable variation in fitness is needed for
entities to evolve by natural selection (Le-
wontin 1970). In principle, many hierarchical
levels can satisfy these criteria, from selfish
genetic elements up through populations of
organisms to the species level and above. The
key effect of natural selection is that it
provides directional change in evolution.
Large-scale evolutionary trends in the fossil
record are persistent directional patterns with
the potential to be produced by selection at
the level of species or genera. Species and
genera do, in fact, have a high degree of
similarity between ancestor and descendants
(Jablonski 1987; Hunt et al. 2005). In addition,
for certain groups, fitness and aspects of
species- and genus-level phenotypes are
known to covary (Van Valen 1975; Jablonski
1986a,b; Liow 2006; Simpson and Harnik
2009).

We know that macroevolutionary dynam-
ics vary and that mechanisms for high levels
of selection exist. But what is unknown is how

causes of selection at different levels are
coupled to morphology and how to tease
apart the separate effects of selection at
multiple levels. How much can species
selection influence organismal-level morpho-
logical evolution when a lower level of
selection is acting simultaneously? Evaluation
of the role of species selection in morpholog-
ical trends has been complicated by a meth-
odological framework that focuses on only a
single trend-generating process (e.g., Gould
and Eldredge 1977) when in fact many can co-
occur. Acceptance of species selection could
only come by demonstrating either its direct
opposition to lower levels of selection or the
nonexistence of selection at a lower level.
Both of these could be exceedingly rare,
making the rejection of the null hypothesis
of oppositional or zero selection nearly
impossible.

In this paper I present a new framework for
studying trends that includes the ability to
estimate the joint contribution of species
selection and driven mechanisms (including
a lower-level of selection) to the overall trend,
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if any. In addition, I empirically evaluate the
role of species selection and driven mecha-
nisms in the putative simplification trend in
the monobathrid crinoid calyx.

I use Price’s Theorem (Price 1972; Frank
1997; Rice 2004; Okasha 2007) to partition the
effects of species selection and driven mech-
anisms into separate parameters, which I
independently estimate from fossil data.
Price’s Theorem accurately models all selec-
tion processes, including macroevolutionary
ones, and allows us to use a framework of
estimation, rather than null hypothesis test-
ing, in the study of species selection. The
magnitude and direction of species selection
is estimated from an observed covariance
between calyx complexity and diversification
rates. I estimate the magnitude and direction
of driven mechanisms, which include micro-
evolutionary change, indirectly using a new
extension of McShea’s (1994) subclade test.
The generalized subclade test can estimate the
vector of driven mechanisms by comparing
the direction of skewness for subclades
sampled in a time-slice and the cumulative
morphological distribution of a subclade up
to the time-slice.

Data

Monobathrid crinoid cups are multi-plated
structures of various shapes (Ausich 1988;
Ausich et al. 1999), with plates united by rigid
sutures (Ausich et al. 1999; Moore and
Laudon 1943; Ubaghs 1978). Monobathrids
are distinguished from the other order of
camerate crinoids by the number of plate
circlets at the base of the calyx below the arm
rays. Monobathrids have only basals and
radials. The remainder of the calyx in both
orders is composed of several ranks of four
basic types of plates: fixed brachials, anals,
interradial, and intraradial plates. Fixed bra-
chial plates occur in each ray and are ranked
from the primibrachial up to the highest rank
included in the calyx. Between each ray are
the interradial plates; if they are absent the
brachials directly contact each other. Intrar-
adial plates occur between the fixed brachials
of a single ray. The anal series occurs in
posterior interray between rays C and D.
Several ranges of anal plates may be present,

and this interray may be wider than other
interrays. Maximum pentagonal symmetry is
achieved in monobathrids with no anal series.
The calyx contains the viscera of the crinoid.
The calyx has two known functions: protect-
ing the organs and providing a rigid base for
the arms to operate (Ausich et al. 1999).

The organization of monobathrid calyx
plates undergoes a distinct simplification over
the history of the group. Early monobathrids
from the Ordovician, e.g., Reteocrinus, have
numerous fixed ray plates separated by a
multitude of minute irregular interbrachial
plates. At the simplest extreme are genera like
Platycrinites, which has a calyx with only
three unequal basals and five radials (Lane
1978). Simplification of the camerate calyx
occurs by the upward displacement and
subsequent elimination of all calyx plates
above the radials (Moore and Laudon 1943).

No functional significance has been attrib-
uted to the reduction of plates over the
Paleozoic in camerates (Simms 1990), but
any number of circlets above two confers
little extra rigidity at the stem-aboral cup
interface (Ausich et al. 1999).

Quantifying Calyx Complexity.—Numerous
metrics have been used for quantifying the
complexity of biological structures (Cisne
1974; McShea 1991, 1992; Sidor 2001), but no
single metric is appropriate for all purposes.
For camerates, the simplification of the calyx
is achieved by a reduction in both the number
of plates and the number of types of plates. I
gathered plate and type counts from pub-
lished taxonomic descriptions, and all analy-
ses are conducted on both of these measures.

Plate number (PN) is equal to the total
number of plates in the calyx. Plates are
counted only if they are restricted to the calyx.
Plates that are also part of the tegmen are not
counted. When a circlet is reduced from five
to fewer by fusion, only the observed num-
bers of plates are counted. The number of
plate types (NPT) is the number of named
plate types that are present in the calyx.

Stratigraphic Ranges of Genera.—I use the
genus ranges of Kammer and Ausich (2006),
which are updated from the first and last
occurrences of Sepkoski et al. (2002) for
crinoid genera. First and last occurrences are
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resolved to the substage level whenever
possible. Boundary ages for the time intervals
are taken from Gradstein et al. (2004) for the
post-Ordovician and Harland et al. (1990) for
the Ordovician.

Genera not resolved to at least the stage
level are not used for estimating taxonomic
rates. For genera occurring in two or more
intervals, the ages of the first and last

occurrences are taken to be the middle of
the interval of first occurrence and the middle
of the interval of last occurrence, respectively.
Genera confined to a single interval are
treated as ranging from the middle to the
end of that interval. Figure 1 presents the
stratigraphic ranges of genera sorted by their
calyx complexity. A general decrease in
complexity is observed.

FIGURE 1. Two measures of genus-level calyx complexity are plotted over the Paleozoic. Each horizontal line is a genus
stating at its time of first appearance and continuing until its time of last appearance. The top panel shows the number
of plates (NP) for each genus of on a log scale. The bottom panel shows the approximate number of plate types (NTP)
for each genus. A small amount of noise is added to the complexity metrics so that individual genera do not overlap on
the plot. A total of 201 genera are included in this analysis.
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Methods

Because large-scale trends—by their very
pervasiveness and persistence—can have
complex dynamics, it has been conceptually
useful to classify large-scale trends into those
generated by passive mechanisms and those
that are somehow driven or otherwise active-
ly generated by selection (McShea 1994;
Wagner 1996). According to McShea (1994)
passive trend mechanisms have no inherent
directionality, but directional patterns are due
to structuring of the underlying state space.
The archetypal passive mechanism was pro-
posed by Stanley (1973). In Stanley’s mecha-
nism, random diffusion away from a mor-
phological limit produces an increase in
variance and a change in the mean pheno-
type. McShea (1994) also included species
selection as a passive mechanism because he
considered the relationship between diversi-
fication rate and morphology to be a charac-
teristic of the state space. Driven mechanisms
are processes that are inherently directional,
where the direction of speciation is consis-
tently biased regardless of causality (McShea
1994). The potential macroevolutionary
trend mechanisms that are included in the
driven trend class are (1) a bias in the
direction of speciation caused by the con-
straints of heterochrony, (2) evolution along
lines of least resistance, (3) microevolutionary
or other systematic anagenetic change, and (4)
directional differences in the magnitude of
character state changes. Wagner (1996) pro-
posed a class of active mechanisms that
included driven ones as well as species
selection and any other mechanism that
would produce a systematic change in phe-
notypes over time.

Wang (2001) and Alroy (2000) have con-
tributed to a more nuanced understanding of
trend classes. Apparently passive trends can
occur by a number of different nonlinear
patterns of ancestor-descendant change (Al-
roy 2000). Wang developed a method to
identify the ratio of passive to driven trend
mechanisms. I take a different approach here
that makes explicit the ways active, driven,
and passive trend mechanisms contribute to
generate a single trend.

Natural selection is a single process no
matter what the units being selected are. So
any single selection process can be described
in terms of Price’s Theorem (Frank 1997;
Okasha 2007; Price 1972; Rice 2004). Price’s
Theorem describes the change in mean
phenotype (Dw) over time as a function of
both natural selection and any other processes
that can change the mean phenotype across
generations. The covariance between fitness
(W) and phenotypes (W) describes the change
due to natural selection. Any changes in the
mean phenotype that result from other
processes are described in the second term
(E W!dd
! "

). Price’s Theorem is (see Appendix
for a derivation):

D!ww~
1
!WW

cov W, wð ÞzE W!dd
! "# $

: ð1Þ

When applied to large-scale trends, Price’s
Theorem aptly parses the change in mean
phenotype to change due to species selection
(cov W,wð Þ) and change due to driven mech-
anisms (E W!dd

! "

). I will make independent
estimates of both of these terms from the
fossil record.

Species Selection.—For any selection process,
including species selection, directionality is a
result of the selection differential. The selec-
tion differential (Sw) measures the change in
the mean phenotype due exclusively to
species selection (where E W!dd

! "

~0). Recall
that the covariance of x and y can be rewritten
as bx,yvar wð Þ, where b is the linear regression
of y on x and var(w) is the variance of w. The
selection differential is defined as

Sw~cov W,wð Þ~bw,W var wð Þ: ð2Þ
Here, bw,W measures the linear regression

between diversification rate (W) and calyx
complexity (w). Much of the possible variation
between fitness and phenotype has no bear-
ing on the selection differential, as it is only
the value of bw,W that is incorporated into

equation (2) (Rice 2004). This fact significantly
simplifies interpreting the role of differential
taxonomic rates in generating directionality in
large-scale trends. Species selection occurs
when the slope of the linear regression of
taxonomic rate on calyx complexity is not
zero. If the slope of linear regression is equal
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to zero, species selection does not operate.
How bw,W is estimated will be discussed

below.
Various methods have been proposed as

tests for species selection (Gould and El-
dredge 1977; Lieberman et al. 1993), but they
suffer from not directly measuring diversifi-
cation rates. In addition, species selection, like
organismal selection, does not operate on
individual lineages, but on the covariance
between differential rates and phenotypes in
a set of lineages, independent of the phylo-
genetic relationships between the lineages.
Phylogenetic lineages may all have similar
phenotypes distinct from other lineages, but
that needn’t be the case. In fact, for macro-
ecological traits (e.g., geographic range) or
general morphological traits (e.g., complexity
or larval mode) unrelated taxa often have
similar phenotypes.

The differential taxonomic rates necessary
for species selection are often conceived of as
a linear function of morphology (Gould 1990,
2002; Stanley 1975, 1979). Although a linear
relationship need not be the case, the linear
regression of fitness on phenotype is the
quantity that determines the effects of direc-
tional selection on the mean phenotype (Rice
2004) and is the primary quantity that would
generate a directional trend.

Unfortunately, the estimation of origination
and extinction rates requires an ensemble of
genera or species. This limits analyses to
those that discretely approximate the rela-
tionship between phenotypes and differential
rates by grouping phenotypes into categories,
even if phenotypes vary continuously. For
calyx complexity there is no natural way to
group genera into morphological categories.
Using a fixed set of morphological categories
to estimate a time-series of differential rates
can make detecting species selection difficult,
because as the clade evolves it may shift out
of a phenotypic category. The number of
occupied categories would then decrease over
time. The slope of the regression between
differential rates and calyx complexity cannot
be adequately estimated if the number of
observations decreases over time. Alterna-
tively, the morphological categories can be

dynamically redefined so that all are occu-
pied during each time-slice. If the true
relationship between fitness and phenotype
is linear, then all approaches will estimate the
selection differential accurately, because esti-
mations of a linear slope are not sensitive to
the distance between the points. Local esti-
mates of the global linear regression are
accurate. However, if the relationship be-
tween fitness and phenotype is nonlinear,
estimates of the linear regression will be
accurate only locally, but the mean of all local
linear regressions accurately estimates the
global linear regressions (Fig. 2).

I use two protocols for defining morpholog-
ical groupings to estimate taxonomic rates for
the quantitative plate counts (PN and NPT).
Groups in each time interval are divided into
quartiles dynamically defined for each interval
and statically for the overall taxonomic group.
For static quartiles, the quartile boundaries are
constant over time, and quartiles may be
empty occasionally, especially in later time-
slices. The dynamic quartiles are defined on
the basis of only those genera present in a
specific cohort. The boundaries between quar-
tiles always change from interval to interval,
but the relative degree of complexity is
maintained. For both types of quartiles defi-
nitions, the most complex is the fourth
quartile, and the simplest is the first.

Per capita origination and extinction rates
are calculated for each time interval using
Foote’s (2000) maximum likelihood metrics.
This allows fluctuations in rates from interval
to interval to be detected. Maximum likeli-
hood extinction rates (q̂q) are a function of the
number of genera that pass through an
interval (Nbt), the number of genera that go
extinct in that interval (Nb), and the interval
length (Dt):

q̂q~{log Nbt=Nbð Þ=Dt: ð3Þ
Origination rates (p̂p) are a function of the
number of genera originating in an interval
(Nt), the number of genera that pass through
that interval (Nbt), and the interval length (Dt):

p̂p~{log Nbt=Ntð Þ=Dt: ð4Þ

For each complexity metric, separate esti-
mates of origination and extinction are made
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for each of the dynamically and statically
defined groups for each time interval. A
single estimate of both origination rate and
extinction rate is also made for the interval as
a whole. A model selection approach (Burn-
ham and Anderson 2002) is used to estimate

the empirical support for multiple rates or a
single rate. Akaike’s Information Criterion
(AIC) (Akaike 1974) is a model-selection
metric derived from information theory that
measures the relative support, with respect to
data, of a preselected set of models. Because

FIGURE 2. A hypothetical nonlinear relationship between phenotype (w) and fitness (W). When the mean phenotype
shifts significantly over time, only a small portion of the full range of possible phenotypes are sampled at any time. The
true selection differential is the linear regression through all the points (solid black lines). Estimates of the selection
differential are shown as dashed lines. Two sampling protocols are used: static phenotypic quartiles and dynamic
phenotypic quartiles. For dynamic quartiles, the selection differential can be estimated as the mean linear regression
coefficient of temporal samples, even if the linear regressions vary in sign and slope (gray lines). The average estimate
of the selection differential for static and dynamic protocols is compared with the true selection differential. Both
sampling protocols recover the true selection differential with suitable precision.
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increasing the number of model parameters
(K) generally increases support (log(L)), AIC
penalizes models by their complexity.

To factor in the effects of small sample
sizes, I use AICc (Burnham and Anderson
2002):

AICc~{2 log Lð Þz2Kz
2K Kz1ð Þ
n{K{1

: ð5Þ

Models with the lowest AICc are preferred.
The AIC differences (Di) values are used to
rank models from highest to lowest confi-
dence: Di~AICi{AICmin. The preferred mod-
el is defined as: Di:Dmin:0. For all n models,
Di can be scaled to sum to one. These are the
Akaike weights (vi):

vi~

exp {
1

2
DAICi

% &

P

n
r~1 exp {

1

2
DAICr

% & : ð6Þ

The Akaike weights allow the set of models
that fit the data to be selected following some
criteria. Here, the presence of species selec-
tion is supported if the multi-rate model has
larger AIC value, where Di for the multi-rate
model is equal to 0. I used an Akaike weight
of 0.89 for the cutoff of model preference. This
is similar to using a likelihood criterion of
rejecting hypotheses when an outcome is
eight times less probable for one model than
for the other (Wagner et al. 2006).

Species selection occurs when the Akaike
weights for the multi-rate model are larger
than 0.89 and the linear regression of diver-
sification rate and calyx complexity is non-
zero.

Directional Bias.—Driven mechanisms pro-
duce a non-zero value of the second term in
Price’s Theorem (E W!dd

! "

). Phylogenetic mech-
anisms, such as a bias in the direction of
speciation (McShea 1994), or directional var-
iation in the magnitude of difference between
ancestor and descendant morphologies
(Wagner 1996), as well as phyletic mecha-
nisms (e.g., microevolutionary change pro-
duced by a lower level of selection) all
produce a non-zero value of this term. The
value of !dd can be directly estimated for
phylogenetic mechanisms from a well-re-
solved phylogeny. Estimating !dd for phyletic

change is more difficult, but in principle it is
possible to do directly. Below, I will empiri-
cally estimate E W!dd

! "

with a new generalized
form of McShea’s (1994) subclade test. It is not
possible with this indirect method to identify
what driven mechanisms are occurring be-
cause it only estimates the strength of the
directional bias, not how that bias is pro-
duced.

Driven trends are those where descendant
species tend to be different from their
ancestral species in a consistent way. McShea
(1994) demonstrates that driven trends con-
sistently produce subclades with a skewed
morphological frequency distribution. He
used this pattern to distinguish passive from
weakly driven trends with the subclade test.
Subclades originating distant from the bound-
ing effects of a morphological constraint or
limit will still be skewed if the trend is driven.
Other methods of detecting driven trends,
preferable to the subclade test but more data
intensive, rely on robust phylogenies and
known ancestor-descendant pairs (Alroy
2000; McShea 1994, 2000). Unfortunately, the
phylogenetic relationships of monobathrid
genera are not sufficiently resolved to use
direct phylogenetic methods.

Because the subclade test was developed
explicitly to distinguish between passive and
weakly driven trends, McShea’s method, as
he used it, does not directly generalize to
driven trends of all strengths. But the skew-
ness of subclades can be used to estimate the
strength of a directional bias indirectly.
McShea’s (1994) simulations show that the
direction of skewness is a function of the
direction of the underlying bias. A tendency
for species to be larger than their ancestors
translates to positive skewness; the tail of the
subclade morphological frequency points in
the direction of the bias. This is true when the
bias is slight, and species are sampled at
single time-slices.

I evaluate the generality of this conclusion
by using a simple birth-death model where
each new species is assigned a morphological
value. In a run of the simulation, each species
is assigned a duration, first appearance, and
number of descendants based on an expo-
nential, uniform, and Poisson distribution,
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respectively. The morphology assigned to
each species is a random uniform deviate
added to or subtracted to the ancestral
morphology, such that new species are
different from their direct ancestor. The
probability of increases can be varied by the
directional bias. A bias of 0.5 is an unbiased
random walk.

In addition to the frequency distribution
constructed of members that cross a single
time-slice, morphological frequency distribu-
tions can be constructed from all members of
a subclade independent of when they lived. I
simulated 1000 clades with a diversity of at
least 50 members and estimated the skewness
for the subclade as a whole and the skewness
of the members occurring during the zenith of
the subclade for nine values of directional
bias.

The result for time-slice samples is strik-
ingly different from what McShea (1994)
found for weakly driven trends. He found
that, in general, skewed tail points in the
direction of the trend. However, his conclu-
sion needs qualifying, because it is only true
when the probability of change between
ancestor and descendant is close to zero.
When the probability that descendants differ
in morphology from their ancestors is low,
the majority of species in a subclade have
identical morphologies and any time-slice
skewness is directly a result of the few species
that deviate morphologically. If the direction
of speciation is unbiased, the expectation is
equal to the number of species on either side
of the mean morphology, yielding a symmet-
rical distribution. When the direction of
speciation is biased, there will be a greater
number of species on one side of the
morphological frequency distribution. When
the morphology of descendant species is
different from its ancestor, the more numer-
ous set of species will show a greater variance
of morphology. This produces a sampled
morphological frequency distribution that is
skewed in the direction of the bias.

The time-slice skewness of subclades is
directly opposite to the speciation bias when
the probability of change is high. If there is no
directional bias, the time-slice morphological
frequency distribution of subclades will be

symmetrical: half of the descendants will be
less than their ancestors and half will be
greater in morphological value. Any bias
changes the overall proportion of descen-
dants that are greater than their ancestors. For
example, if the bias is equivalent to 60
increases for every 40 decreases, the mode
of the time-slice morphological frequency
distribution will shift in the direction of the
bias, producing a distribution skewed in the
opposite direction of the bias.

The direction of skewness for morpholog-
ical frequency distributions consisting of all
members of the subclade depends on the
strength of the directional bias. Strongly
driven trends leave what amounts to strag-
glers behind the bulk of the species. The faster
the subclade moves through morphospace the
more distant the earliest members will lie in
morphospace. This causes the direction of
skewness to point in the opposite direction
from the direction of the bias. Weakly driven
trends send out few founders and the
skewness points in the direction of the bias.

The strength of the directional bias can be
indirectly measured from the direction of
skewness of both whole and time-slice fre-
quency distributions. The sign of the average
skewness for both whole subclades and time-
slice sample distributions has been calibrated
to the directional bias by simulation. The
calibration is presented in Table 1 and illus-
trated in Figure 3.

Results

Species Selection.—Table 2 presents the AIC
model selection results for each time interval.
Diversification rates are estimated following
three models separately for both NP and NTP
measures of calyx complexity. First, a single
estimate of origination rate and extinction rate
is made for all genera combined. Diversifica-
tion rate is calculated as origination minus
extinction rate. Estimates of diversification
rates for both dynamic and static quartiles are
then made for each interval. Because static
and dynamic morphological quartiles are
different protocols for sampling the relation-
ship between fitness and phenotype, they are
not treated like competing models in the AIC
analysis. Dynamic and static quartile models
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are compared separately with the single-rate
model. AIC values for both complexity
metrics have preferred support for species
selection in each time interval during which a

comparison can be made. Table 3 compares
the AIC values for the time-series of diversi-
fication rates for each model. Here, log-
likelihoods are summed over the whole
time-series and the resulting AIC values
allow a ranking of the models I use to
estimate the average diversification rate.
Models of species selection are overwhelm-
ingly preferred over a model where only a
single diversification rate exists; the Akaike
weights (vi) indicate no support for the
single-rate model. Because models of species
selection are preferred over the model with a
single ensemble rate in all time intervals, the
magnitude and direction of species selection
can be measured.

A single-rate estimate is made for each
phenotypic quartile in each time interval. The
directional selection differential for an inter-
val in time is a function of the linear
regression of the diversification rate estimates
on the median calyx complexity of each
phenotypic quartile. The net effect of species
selection can be measured by a single linear

TABLE 1. The direction of skewness for simulated
morphological frequency distributions estimated from
every member of a subclade and for those members that
cross the time-slice with maximal diversity. A simple
birth-death model (described in the text) for each bias
parameter is used to correlate the bias parameter with the
direction of skewness for both sampling protocols. One
thousand simulation runs that produce a total diversity
greater than 50 species were made for each parameter
value.

Bias (probability
of increase in
complexity)

Skewness
of all members

Skewness of
members at the
time of highest

diversity

0.1 + +
0.2 + +
0.3 2 +
0.4 2 +
0.5 0 0
0.6 + 2
0.7 + 2
0.8 2 2
0.9 2 2

FIGURE 3. Simulated lineages illustrating how the generalized subclade test can estimate the strength of a driven trend.
The generalized subclade test compares the skewness of the frequency distribution for all members of a lineage to the
skewness of the frequency distribution of only those members occurring at a single time-slice. Five typical
monophyletic lineages are shown in gray, each with a different probability of morphological change at the time of
speciation. The vertical black line indicates the morphology of the first species in all lineages. Two sets of histograms
are plotted for each lineage: the frequency distribution of species morphologies at the last time-slice, and the frequency
distribution of all species morphologies in the lineage.
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regression between complexity and diversifi-
cation rate or as the average of the per-
interval linear regressions, even if the direc-
tion and magnitude change over time.

In Figure 4, I present the linear regressions
estimated at each time interval for dynamic
and static quartiles for both complexity
measures (NP, NTP). Because the range of
phenotypes changes over time, the average
selection differential cannot be estimated by a
single linear regression through the complex-
ity-diversification rate data, which gives a
slope opposite of the interval-to-interval
slopes. Instead, I measure the net selection
differential by taking the average slope of per-
interval linear regressions.

There is no way to know a priori what the
relationship between diversification rate and
calyx complexity will be, so the static quar-
tiles are used to estimate the global pattern
and the dynamic quartiles estimate the local
relationship. The average slope of both static
and dynamic estimates is presented in the
bottom panel of Figure 4. For both the
number of plates (NP) and the number of
types of plates (NTP) the average linear
regression has a negative slope. This means
that, on average, high calyx complexity is
associated with negative diversification rate.
Simple genera tend to have a positive
diversification rate. This pattern in the co-
variation of diversification rates and com-
plexity is consistent with the patterns of
standing diversity seen in the fossil record
of monobathrids because diversification rates

can be negative when diversity is high and
positive when diversification is low. Early in
their history, monobathrids are quite diverse
and have a range of calyx complexities;
however, these groups go extinct over the
Paleozoic. Toward the end of the Paleozoic,
the platycrinitids are dominant but have
comparatively low diversity, which is main-
tained by a low, but positive, diversification
rate.

Driven Mechanisms.—Using families as sub-
clades, I conducted a subclade test for
camerate plate counts and plate types. Both
total and time-slice subclade tests are pre-
sented in Figure 5. Because monobathrids, as
a clade, originally had complex calyces but no
known limit to complexity exists (a calyx
could has as many plates and plate types as
imaginable), there is no a priori expectation
for the occurrence passive diffusion away
from a morphological boundary. However,
passive diffusion can still be ruled out by
plotting subclade skewness against the mean
subclade complexity. If any unidentified
boundaries exist they will be indicated by a
correlation between skewness and mean
complexity. Skewed subclades occur across
the full range of complexity, so passive
diffusion can be rejected as a mechanism.
Subclades do vary in their direction of
skewness. I use the sign of the average
skewness for subclades as a whole and of
time-slice subclades to estimate the direction-
al bias and the expected change in mean
morphology over time (Table 4). For the
number of plates (NP) the mean skewness
for subclades as a whole is 0.48, and the mean
time-slice skewness for NP equals 0.20. For
the number of types of plates (NTP) the whole
subclade skewness equals 0.28 and has a
time-slice skew of 0.17. Using Table 3, we can
infer the average directional bias from the
direction of both whole subclade and time-
slice skewness. When both skewness mea-
sures are positive we can infer that there is a
tendency for complexity to decrease due to
driven mechanisms.

Discussion

Species Selection.—Price’s Theorem (eq. 1;
also see Appendix) describes how the change

TABLE 3. A comparison of support for models of
differential diversification rates and a for model of a
single diversification rate. Log-likelihoods (log L) are
summed across each parameter in the model. DAICc
show the difference between the small sample size AIC of
the model minus the AIC for the best model. Akaike
weights (vi) are also presented. Models that show greater
support are indicated in bold.

Model log L DAICc vi

Single Rate NP 2269 281 0
Static Quartile NP 2138 0 1
Single Rate NP 2269 300 0
Dynamic Quartile NP 290 0 1
Single Rate NTP 2269 282 0
Static Quartile NTP 2144 0 1
Single Rate NTP 2269 390 0
Dynamic Quartile NTP 273 0 1
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in the mean phenotype is a function of both
the change due to species selection and that
due to driven mechanisms. This partition is
possible because the effects of natural selec-
tion are easy to understand. The covariance
between fitness and phenotype is precisely
what we mean by natural selection, whatever

focal level we are studying. Furthermore, this
covariance is independent of the phylogenetic
relationships of the evolving units. All members
of a phenotypic class have the same expected
fitness independent of the possibility that their
ancestors were of a different phenotypic class.
For directional selection, the expected fitness is

FIGURE 4. Estimates of the selection differential for monobathrid crinoids. Separate estimates are made for plate
numbers (NP) and the number of plate types (NTP). Genera are grouped by their phenotypes into quartiles. Quartiles
are either static, applied to each time interval in turn, or they are dynamic and redefined according to the range of
phenotypes in that interval. Diversification rates are estimated for each quartile in an interval. The selection differential
is the linear regression of diversification rate on the median phenotype of each quartile. The selection differential is
estimated separately in each time interval (gray regression lines). Because of the variable direction of selection, the
average of all slopes is used to estimate the overall selection differential for NP and NTP (lines plotted in black). Both
static and dynamic quartiles are pooled in the bottom panels. The average slope of temporal estimates of both static and
dynamic quartiles is the estimate of the selection differential for that trait.
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simply the linear regression of estimated real-
ized fitness on phenotype. The average linear
regression is 20.009 for NP and 20.017 for NTP.
These values, when multiplied by the pheno-

typic variance, give the net selection differential
(Sw~cov W,wð Þ~bw,W var wð Þ; SNP~{0:02077;
SNTP~{0:1139). This is the measurable net
effect of species selection that is responsible, in
part, for the simplification trend in monoba-
thrids.

A selection differential is estimated for each
time interval from the diversification rates of
the best-supported model. Recall that I com-
pare two models of species selection, one
where all phenotypes have the same rates
and one where rates vary with phenotype. If
the single-rate model has greater support, then

FIGURE 5. A subclade test of camerate families. There are two methods of sampling the skewness of subclades: (1) the
skewness of the whole-subclade and (2) the skewness of the subclade at a single time-slice. Both are presented here; the
top panels are the whole subclade test. In the bottom panels skewnesses are measured for each subclade at the time of its
peak diversity. Skewness is plotted against the mean plate counts for each subclade. No correlation between plate count
and skewness exists, indicating that no morphological boundaries are influencing skewness. The left panels show
subclade tests for the total number of plates, while the right panels show subclade tests for the number of plate types.

TABLE 4. Mean skewness of monobathrid families.
Skewness for both protocols are positive for both
complexity metrics. Using the calibration in Table 3, we
see that the probability that a species will be more
complex than its ancestor is less than 0.2.

Mean subclade skew Mean sampled skew

NP 0.48 0.2
NTP 0.28 0.17
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the estimated selection differential will always
be equal to zero. If the multi-rate model has
greater support, then the selection differential
can have any value, including zero. Common-
ly linear regressions are used to estimate the
causal relationship between two factors, and in
these cases testing for the significance of the
regression is important. Here, the significance
of the linear regression is not important
because the linear regression between pheno-
type and fitness itself determines the dynamics
of evolution (Rice 2004).

The large variation in selection differentials
from interval to interval makes it important to
distinguish between the effects of species
selection and its strength. The strength of
species selection can be measured in each
interval and can vary in magnitude, whereas
the effect of species selection can be measured
by the difference in morphology after some
elapsed time due to species selection.

Driven Mechanisms.—The effects of all other
processes that produce a directional change in
phenotypes over time are partitioned into the
second term of Price’s Theorem. The classic
driven mechanisms are all represented in
Price’s Theorem as the value of the second
term. When E W,!dd

! "

is non-zero, there is a
driven component. Similarly, passive diffu-
sion away from a morphological boundary
also produces a non-zero value in this term of
Price’s Theorem because the mean is expected
to increase even if the minimum does not
(McShea 1994). Because the average skewness
of both sampling protocols are positive, the
directional bias is estimated to be very strong;
the probability of complexity increasing is at
least 0.2. This means that at least 80% of
genera can be inferred to be simpler than their
ancestors. Unfortunately the indirectness of
the subclade test does not allow the actual
mechanism of directional change to be made.
But because subclade skewness is not corre-
lated with the mean subclade complexity,
there is no effect of passive diffusion detect-
able. Bounded diffusion is the only passive
mechanism that generates an expected direc-
tion change; thus the mechanism involved in
monobathrids must be driven.

Combining the Effects of Species Selection and
Driven Mechanisms.—In monobathrids, both

terms of Price’s Theorem are estimated to be
non-zero and negative. Species selection and
driven mechanisms contribute in concert to
the overall trend.

Traditionally, species selection is recognized
if the null hypothesis of directionality pro-
duced by driven mechanisms and lower levels
of selection is rejected (Gould and Eldredge
1977; Lieberman et al. 1993; Grantham 1995).
Price’s Theorem accurately models all selection
processes, including macroevolutionary ones,
and allows us to use a framework of estimation
rather than null hypothesis testing in the study
of species selection. The payoff of this approach
is the ability to identify the contribution and
interaction of different processes to a pattern
when the processes produce roughly the same
patterns. This approach is particularly relevant
for macroevolution, where the role of multiple
levels of selection and constraints in morpho-
logical evolution could interact in complex
ways. Price’s Theorem can be hierarchically
expanded to describe multiple levels of selec-
tion (Hamilton 1975; Arnold and Fristrup 1982;
Frank 1998; Okasha 2007) and driven change.
To make the hierarchical expansion, note that
the driven component of Price’s Theorem,
E W,!dd
! "

, contains the change in phenotype
between ancestor and descendant (!dd). This is
really just a change in phenotype over time and
is itself a function of selection and driven
mechanisms at a lower level, meaning that
Price’s Theorem also describes changes in d:

dupperlevel~
1
!WW

cov(W, wupperlevel)
h

zE(Wdlowerlevel)#: ð7Þ
Recursively expanding Price’s Theorem allows
it to describe multiple levels of selection. To
add in a lower level of selection, equation (1)
(this time indexed for individuals within a
group) can be substituted for the mean change
in phenotype:

D!wwg~
1
!WWg

cov Wg,wg

' (h

z
1

N

X

g

1
!WWi

covg Wi, wið ÞzEg Wi
!ddi

! "

) **

ð8Þ

What this means for interacting macroevolu-
tionary processes is that, for example, a lower

)
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level of selection and a bias in the direction of
speciation both change the mean phenotype
over time independent of selection at that level.
Microevolution and focal-level driven mecha-
nisms have the same effect on a trend, and both
are independent of selection at the focal level.
They both produce a systematic change in
phenotypes over time, which is then sorted by
selection. In other words, morphological stasis
is not required for species selection to operate.

Summary

The complexity of the monobathrid calyx is
quantified as the number of plate types and
the plate number. The complexity of the calyx
decreases over time so that later camerates
tend to have much simpler calyces.

Price’s Theorem, an exact statistical de-
scription of the process of natural selection, is
used to model the interaction of selection and
driven trend mechanisms. The values of the
terms of Price’s Theorem are estimated from
the fossil record of monobathrids. The vector
of directional species selection is a function of
the linear regression of diversification rate on
calyx complexity. Differential diversification
rates were identified by a model-selection
approach and used to estimate the selection
differential in each time interval. Genera with
simple calyces tend to have a higher diversi-
fication rate than genera with complex caly-
ces.

The strength of the driven mechanism was
estimated by a generalized subclade test
where the direction of skewness for subclades
was calibrated to the strength of the direc-
tional bias by simulation. Monobathrid fam-
ilies were used as subclades, and the skew-
ness of all genera in a family and the
skewness of only those genera alive during
the zenith of the family were calculated. A
directional change, where about 80% of
genera are simpler than their ancestors is
indirectly estimated.

Both species selection and the driven
component contribute to the overall simplifi-
cation of the monobathrid calyx over time.
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Appendix

Price’s Theorem.—The following derivation of Price’s Theorem
follows Rice (2004). Let N be the population size, wi be the
phenotype of individual i, and !ww be the mean phenotype. The
phenotypic difference between the jth descendant of individual i
is denoted di,j. The symbol for the difference between the mean
descendant phenotype and wi is !ddi. Individual i has Wi

descendants. !WW is the mean number of descendants per
individual. Descendant j’s phenotype is equal to wizdi,j. The
mean phenotype of the descendants (!ww’) is calculated by summing
up the phenotypes of Wi descendants of individual i, repeating
for the N phenotypes of the ancestral generation, and dividing by
the total number of descendants:

!ww’~

P

N

i~1

P

Wi

j~1
wizdi,j

! "

P

N

i~1
Wi

: ðA1Þ

Equation (1) can be rewritten as,

!ww’~
1

N !WW

X

N

i~1

Wiwiz
X

N

i~1

Wi
!ddi

" #

, ðA2Þ

which simplifies to

!ww’~
1
!WW

E Wiwið ÞzE Wi
!ddi

! "# $

: ðA3Þ

Recall that cov x, yð Þ~E xyð Þ{!xx:!yy and substitute it for E Wwð Þ:

!ww’~
1
!WW

cov Wwð Þz !WW!wwzE Wi
!ddi

! "# $

~
1
!WW

cov Wwð ÞzE Wi
!ddi

! "# $

z!ww:

ðA4Þ

Subtracting !ww from both sides gives the final form of Price’s
Theorem describing the change in mean phenotype over time (Dw).
This change is a function of the covariance between fitness (W) and
phenotype (w) (the covariance represents the selection differential)

and the expected mean phenotype after reproduction occurs (!dd is
the mean difference between ancestor and descendants). Price’s
Theorem is:

D!ww~
1
!WW

cov W,wð ÞzE W!dd
! "# $

: ðA5Þ

496 CARL SIMPSON


